一致连续的解释
1、一致连续:某一函数f在区间I上有定义,如果对于任意的ε>0,总有δ>0 ,使得在区间I上的任意两点x和x,当满足|x-x|<δ时,|f(x)-f(x)|<ε恒成立,则该函数在区间I上一致连续。
2、对于在闭区间上的连续函数,其在该区间上必一致连续,一致连续的函数必定是连续函数。从上述定义中可以看出,当函数在区间I上一致连续时,无论在区间I上的任何部分,只要自变量的两个数值接近到一定程度,总可以使相应的函数值达到预先指定的接近程度。
1、一致连续:某一函数f在区间I上有定义,如果对于任意的ε>0,总有δ>0 ,使得在区间I上的任意两点x和x,当满足|x-x|<δ时,|f(x)-f(x)|<ε恒成立,则该函数在区间I上一致连续。
2、对于在闭区间上的连续函数,其在该区间上必一致连续,一致连续的函数必定是连续函数。从上述定义中可以看出,当函数在区间I上一致连续时,无论在区间I上的任何部分,只要自变量的两个数值接近到一定程度,总可以使相应的函数值达到预先指定的接近程度。